1. FLUJO MAGNÉTICO

$$\varphi = \oint \vec{B} \cdot d\vec{S} = \int |\vec{B}| \cdot |d\vec{S}| \cdot \cos \alpha = \begin{cases} \varphi_{m\acute{a}x} : \vec{B} \parallel \vec{S} \\ \varphi_{m\acute{n}} : \vec{B} \perp \vec{S} \end{cases}$$
(Wb)

2. INDUCCIÓN DE LA F.E.M

Fuerza electromotriz (f.e.m) = diferencia de potencial (E)

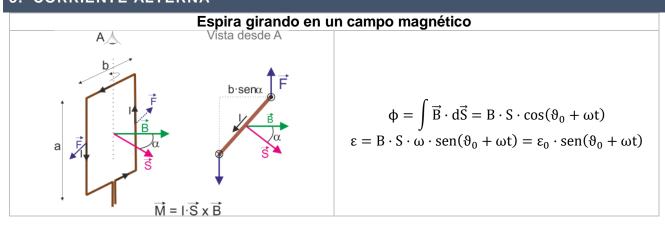
Si varía $\overrightarrow{B_{ext}} \Longrightarrow$ varía $\varphi \begin{cases} \text{se produce corriente eléctrica} \\ \text{se produce } \overrightarrow{B} \text{ inducido en sentido contrario a } \overrightarrow{B_{ext}} \\ \text{se produce f. e. m} \end{cases}$

Ley de Faraday-Henry

$$\mathcal{E} = -\frac{d\phi}{dt} = |\mathbf{B} \cdot \mathbf{v} \cdot \mathbf{l}|(\mathbf{V})$$

La orientación de la f.e.m es la orientación de la $\overrightarrow{F_m} = q \cdot (\vec{v} \times \vec{B})$, donde q < 0

En una barra metálica


$$F_e = F_m \longrightarrow q \cdot E = q \cdot v \cdot B \longrightarrow \begin{cases} E = v \cdot B \\ E = \frac{V}{l} \end{cases} \longrightarrow V = l \cdot v \cdot B$$

Ley de Ohm

$$V = I \cdot R$$

$$R = resistencia(\Omega)$$

3. CORRIENTE ALTERNA

$$\begin{array}{c|c} \textbf{Alternador} \\ \epsilon = \epsilon_0 \cdot \text{sen}(\vartheta_0 + \omega t) & \epsilon_0 = \text{NBS}\omega \end{array}$$