1. PROPAGACIÓN DE ONDAS

- Principio de Huygens: cada punto de un frente de onda sirve como foco de ondas secundarias con la misma f y v.
- Principio de superposición: cuando dos a más ondas coinciden en un punto, la perturbación resultante es la suma de las perturbaciones individuales.

2. INTERFERENCIAS

- Ondas coherentes: ondas emitidas desde focos diferentes que comparten la v y la f.
- Ecuación de la onda resultante de la interferencia: viajan en la misma dirección y en sentidos opuestos

$$y = 2 \operatorname{sen}(\omega t) \cdot \cos(kx)$$

• Ondas estacionarias: interferencia de ondas de la misma dirección, sentido contrario y desfasadas π rad, que se anulan en los nodos y sumadas en los vientres.

$$y = -2A \operatorname{sen}(kx) \cdot \cos(\omega t)$$

2.1. FASE Y DESFASE

$$\Delta \phi = (\omega t - k x_2) - (\omega t - k x_1) = k (x_1 - x_2)$$
 Si las ondas están en fase $(\Delta \phi = 2n\pi)$ Si las ondas están en oposición de fase $[\Delta \phi = (2n+1)\pi]$
$$x_1 - x_2 = \frac{\Delta \phi}{k} = \frac{2\pi n}{\frac{2\pi}{\lambda}} = n \lambda$$

$$x_1 - x_2 = \frac{\Delta \phi}{k} = \frac{(2n+1)\pi}{\frac{2\pi}{\lambda}} = (2n+1)\frac{\lambda}{2}$$

2.2. AMPLITUD RESULTANTE

$$A_{r} = 2A\cos\left(k \cdot \frac{x_{1} - x_{2}}{2}\right) = 2A\cos\left(\frac{1}{2}\Delta\phi\right)$$

- La interferencia será constructiva en un punto donde $\cos \alpha = 1$, ya que entonces $A_r = 2A$
- La interferencia será destructiva en un punto donde $\cos \alpha = 0$, ya que entonces $A_r = 0$

3. REFLEXIÓN Y REFRACCIÓN

La **reflexión** es el fenómeno por el cual una onda incide en una superficie que separa dos medios y rebota con la misma velocidad y diferente dirección. El ángulo de incidencia (α) es igual al ángulo de reflexión (β).

La **refracción** es el fenómeno por el cual una onda pasa a otro medio y se propaga con una velocidad y dirección diferente. El ángulo de incidencia (α) no es igual al ángulo de refracción (β).

$$f = \frac{v}{\lambda} = \frac{v'}{\lambda'}$$

$$n_1 = \frac{c}{v_1}$$

$$n_2 = \frac{c}{v_2}$$

$$n_2 = \frac{v}{v_2}$$

$$n_1 = \frac{v}{n_2} = n$$

$$n_2 = \frac{c}{v_2}$$

$$\text{Angulo límite: } \alpha \text{ es límite} \leftrightarrow \beta = 90^\circ$$

4. DIFRACCIÓN

La difracción se produce cuando las ondas se reproducen cuando se encuentran un obstáculo del mismo orden de magnitud que λ .

- **Producida por una rendija**: $\Delta x = n \lambda = d \sin \alpha$. $d = lo que mide la rendija. La interferencia es destructiva si <math>\sin \alpha = (n+1)\frac{\lambda}{2d}$
- Producida por una doble rendija: $\frac{\lambda}{d} = \frac{Y}{D}$

d = distancia entre rendijas

D = distancia de las rendijas a la pantalla

Y = distancia entre las líneas de difracción

5. FENÓMENOS SONOROS

La velocidad del sonido depende del medio.

	EN SÓLIDOS			
$v = \sqrt{\frac{J}{\rho}}$	J: módulo de Young. Elasticidad del medio ρ: densidad del sólido			
EN LÍQUIDOS				
$v=\sqrt{\frac{B}{\rho}}$	B: coeficiente volumétrico. Resistencia a los cambios de presión			
	ρ: densidad del líquido			
EN GASES				
$v = \sqrt{\frac{\gamma R T}{M}}$	γ: coeficiente de dilatación adiabática			
	R: constante de los gases ideales			
	T: temperatura			
	M: masa molar del gas			

6. CUALIDADES DEL SONIDO

- Intensidad = "volumen"
- Tono = frecuencia de vibración (sonidos agudos y graves)
- **Timbre** = determinado por el espectro acústico
- Frecuencias de resonancia: aquellas frecuencias que tienen asociado un armónico (n)

Formación de ondas estacionarias en cuerdas				
Fija por ambos extremos $(n \in \mathbb{N})$		Fija por un extremo (n = 1, 3, 5, 7)		
$f_n = \frac{n v}{2 L}$	$\lambda_n = \frac{2 L}{n}$	$f_n = \frac{n v}{4 L}$	$\lambda_n = \frac{4 L}{n}$	
Formación de ondas estacionarias en tubos				
Abierto por ambos extremos $(n \in \mathbb{N})$		Abierto por un extremo		
$f_n = \frac{n v}{2 L}$	$\lambda_n = \frac{2 L}{n}$	$f_n = \frac{n v}{4 L}$	$\lambda_n = \frac{4 L}{n}$	

Nivel de intensidad sonora

$$S = 10 \log \frac{I}{I_0}$$
 (dB) $I_0 = 10^{-12} \text{ W/m}^2$

7. EFECTO DOPPLER

Es el cambio que se observa en la frecuencia de una onda cuando el emisor y el receptor se desplazan con movimiento relativo.

$$f' = f \cdot \frac{v \pm v_R}{v \pm v_F}$$

v_R= velocidad del receptor

v_F = velocidad del emisor

Cuando el foco se acerca al observador, la f' será mayor que f porque los frentes de onda se juntan más y λ es más pequeña.

Si se aleja del observador, la f' será menor que f, porque los frentes de onda se separan más y λ es mayor.